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Abstract Trade-offs in performance of different ecological functions within a
species are commonly offered as an explanation for co-existence in natural commu-
nities. Single trade-offs between competitive ability and other life history traits have
been shown to support a large number of species, as a result of strong competitive
asymmetry. We consider a single competition-fecundity trade-off in a homogeneous
environment, and examine the effect of the form of asymmetry on the likelihood of
species co-existing. We find conditions that allow co-existence of two species for a
general competition function, and show that (1) two species can only co-exist if the
competition function is sufficiently steep when the species are similar; (2) when com-
petition is determined by a linear function, no more than two species can co-exist;
(3) when the competition between two individuals is determined by a discontinuous
step function, this single trade-off can support an arbitrarily large number of species.
Further, we show analytically that as the degree of asymmetry in competition in-
creases, the probability of a given number of species co-existing also increases, but
note that even in the most favourable conditions, large numbers of species co-existing
along a single trade-off is highly unlikely. On this basis, we suggest it is unlikely that
single trade-offs are able to support high levels of bio-diversity without interacting
other processes.
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1 Introduction

There is no such thing in the natural world as a Darwinian demon which maximizes
all possible life history traits (Law 1979), and instead individuals have to allocate
resources to one life-history trait at the expense of others. This results in trade-offs
between life history traits, so that, for example a plant species which allocates re-
source to rapid growth does so at the expense of its ability to withstand shading; or
a species that has allocated much of the available resource to out-competing other
species will suffer a decrease in its ability to disperse and colonise empty areas of the
environment (e.g. Tilman 1994; Cadotte et al. 2006). Other classic life-history trade-
offs include the offspring size-number trade-off (e.g. Venable 1992); the trade-offs
between pathogen resistance and fecundity (e.g. Bowers et al. 1994); and competi-
tion and intra-guild predation (Amarasekare 2007).

Theory has shown that these trade-offs can allow two or more species to co-exist
while competing for the same resources (e.g. Kisdi and Geritz 2003; Levins and Cul-
ver 1971; Bonsall and Mangel 2004), and consequently that trade-offs may be in-
strumental in the evolution of bio-diversity (Schluter 1995; White and Bowers 2005;
Bonsall and Mangel 2004). In particular, Levins and Culver (1971) originally high-
lighted two such trade-offs, the competition-colonisation trade-off which has received
much attention, and the trade-off between death rate and competitive ability which
has received less attention. Levins and Culver argued that two species can co-exist if
one experiences a lower death rate, but is a weaker competitor than the other species.
Both trade-offs are closely related, and have received much attention, with Tilman
(1994) showing that the competition-colonisation trade-off can potentially lead to
infinitely many species co-existing.

However, the conditions under which species either competitively exclude, or co-
exist alongside others due to trade-offs between competition and other life history
traits might also be dependent on the existence and level of asymmetric competition
between species (Adler and Mosquera 2000). Competition is called asymmetric if an
individual with larger trait value (e.g. size) is bestowed some benefit over small trait
valued neighbours, winning more than 50 % of contests by virtue of this difference in
trait. This competition is deemed to be very asymmetric if there is a large difference
in competitive ability between individuals which have slightly different trait values.
Asymmetric competition is widespread in the natural world, forming the majority of
inter-species competition in insects (Lawton and Hassell 1981); and is prevalent in
plants where competition for light is expected to be size dependent, such that a larger
plant may intercept nearly all the available light at the expense of a smaller individual
(Weiner 1990). However, there is relatively little theory that investigates how the
strength of competitive asymmetry may affect the maintenance of bio-diversity.

Adler and Mosquera (2000) demonstrated that, if the competition between two
species is determined by a step function with infinite gradient when traits are the
same, then the species richness, the number of species present in the community,
is maximised in their model. They then used numerical simulations of their model
to show how reducing the degree of competitive asymmetry reduces the number of
species that can co-exist on the trade-off. Similarly, Kisdi (1999) showed that the
gradient of the competition function at the point where two competing individuals
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have the same trait value (i.e. the same size), is critical in determining the number
of species that may evolve in the long term. In other words, co-existence and the
evolution of a large community seem to be more likely if a small change in fecundity
translates into a large change in competitive ability.

Here, we build on this previous work and analyse a model with a single trade-off
between competitive ability and fecundity. We will find conditions required for two
species to co-exist, and demonstrate that while no more than two species can co-exist
when competition is a linear function of the trait value, if the mechanisms of the
competition between species allows for a discontinuity in the competition function,
then co-existence of any number of distinct species is possible. We also demonstrate
analytically for two species that this discontinuous competition gives an upper bound
on the likelihood of co-existence when compared with two convex–concave functions
that tend to the step function as parameters are altered. Niche theory suggests that as
species become more similar co-existence should become more unlikely, but few
studies have quantitatively investigated this in the context of life-history trade-offs.
Using rigorous proofs, we will show that competitive asymmetry and the gradient
of the competition function at the origin are important in determining the number
of species able to persist on one trade-off, but also show that even under the most
favourable conditions, large numbers of species co-existing on one trade-off is very
unlikely.

2 The Model

We examine co-existence criteria in a simple model where species differ only in
their per capita fecundity and their competitive ability. The per capita fecundity is
compared to competitive ability through assigning a trait value to each species. The
typical traits we have in mind are body size, or weight of armament, and a strong
competitor has a lower fecundity, creating a competition-fecundity trade-off. In do-
ing so, we assume a species which is a stronger competitor diverts resources into this
trait, perhaps by delaying reproduction and growing in size; whereas a weaker com-
petitor diverts more resources into reproduction at the cost of competitive ability. We
assume this trade-off, which restricts parameter space within the model, is conserved
across species, and that it can be described by two functions that relate a species’ trait
value to (i) fecundity, and (ii) competitive ability. In particular, we will explore how
the shape of the latter function is important in determining the amount of species that
may be supported by the trade-off.

Let n denote the number of species present in the environment, with species i

having expected size xi and population density Nxi . We use Lotka–Volterra equations
to describe the population dynamics:

dNxi

dt
= Nxi

(

p(xi) −
n∑

j=1

c(xi − xj )Nxj

)

, (1)

where p(xi) is the intrinsic growth rate of species i when resources are not limiting
and the environment is free of competition; c(xi − xj ) is the competition kernel used
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to quantify the impact of competition with species j on species i which depends only
on the difference in trait values xi − xj . For larger species, which have lower fecun-
dity, p(xi) is lower than for species with smaller trait values, so we assume that p(xi)

is a strictly decreasing non-negative function of trait value xi . The intrinsic growth
rate p is assumed to be greater than zero, as any species with a non-positive growth
rate would not be able to grow in even an empty environment. Since we are at liberty
to choose units for x, we choose xmax = 1 since the maximum trait value for which
the growth rate is zero: p(1) = 0. Similarly, we let xmin = 0 be the smallest permis-
sible trait value, meaning all extra resources are diverted into fecundity rather than
competitive ability. In what follows, we will mainly work with the linear growth func-
tion p(xi) = ρ(1 − xi) where ρ > 0. However, we will use p(xi) wherever possible
in order to show how the method may be extended to non-linear growth functions.
Using these assumptions, our aim is to investigate the possibility and probability of
co-existence of species selected at random across the entire trait-space.

The continuous competition kernels c(xi − xj ) we consider are non-increasing
functions of the difference between the individual’s trait value and that of its com-
petitor, i.e. non-increasing in (xi − xj ). This means that an individual with large trait
value experiences little competition from competing individuals with smaller trait
values, while small trait value individuals suffer a much larger competitive effect
from large individuals. For example, taller trees will clearly intercept light earlier
than shorter individuals, while shading shorter neighbours. However, shorter trees
will have limited shading effect on a tall neighbour. We use convex–concave func-
tions, to reflect the realistic assumption that two large species will have a similar
effect on a much smaller third species, while a large individual will suffer approx-
imately equal effects from two much smaller individuals. However, when all three
species are of similar size, the effects of the larger (smaller) two on the smallest
(largest) may vary significantly. The discontinuous competition is a suitable limit of
such continuous functions, and although it is less realistic, it allows for useful analyt-
ical upper bounds for the continuous cases.

We study the effects of asymmetric competition for two species considering
(1) a general function c(z) and linear growth, with a focus on two examples; and
(2) for general growth p(xi) with linear and step function c(xi − xj ), which we also
consider for n > 2. As with the growth function, the general linear competition kernel
is studied, with

c(xi − xj ) = κ − θ(xi − xj ), (2)

but additional restrictions are applied to the convex-concave and step functions
model. To ensure that the effect of this competition is never positive, such that the
model represents a predator–prey interaction or mutualism, it is necessary to have
κ > θ . The intra-specific competition (i.e. when xi = xj ) is assumed to be identical
across species, and can be scaled to one to reduce the number of parameters, and it
is assumed that the total negative effect of competition in an interaction between any
two individuals is the same. Ecologically, this means that there is a set amount of
resource to be shared between any two individuals. When the two individuals are the
same species and have equal trait values, each takes on average 50 % of the resource,
or wins the competitive contest roughly half of the time. When the trait values differ,
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the stronger competitor takes a greater percentage of the resource, leaving less for the
weaker competitor. To reflect this, we study two continuous competition functions, a
piecewise linear function given by

c(xi − xj ) =






1 + ε xi − xj ≤ −Θ,

1 − ε
Θ (xi − xj ) −Θ < xi − xj < Θ,

1 − ε xi − xj > Θ,

(3)

and a smooth function modified from that used by Kisdi (1999), which we consider
as

c(xi − xj ) = 1 + ε − 2ε

1 + e− 2(xi−xj )

Θ

. (4)

As Θ tends to zero, these two functions both tend to a step function, that will be
considered in detail for general n species dynamics. This function is given by

c(xi − xj ) =






1 + ε xi < xj ,

1 xi = xj ,

1 − ε xi > xj ,

(5)

and is used as the discontinuous competition function throughout this study (see also
Tilman 1994; May and Nowak 1994).

Our model is similar to those studied by Law et al. (1997) and Kisdi (1999), al-
though both of their models only considered a concave–convex competition function
in lieu of the linear and discontinuous functions considered for large n here. The
function ck,ν(z) = c(1 − 1/(ν + ekz)) used by Kisdi, of which (4) is a modified ver-
sion tends to a discontinuous step function of the type studied here as θ = 1/k tends
to zero (ν > 0 fixed). The use of simplified competition functions in this study allows
for more analytical work than the more complex functions used in Kisdi’s analysis.
We demonstrate in the two species case that our results for the discontinuous com-
petition function are similar to those produced using the competition kernel given
by (4) when θ is small, and hence allow for comparison with Kisdi’s competition
model which shows qualitatively similar results for two species co-existence with
linear growth.

When ε = 1, our model with a step function c(z) takes the same form as the spa-
tially implicit model presented by Klausmeier (1998), which also demonstrates that
co-existence is possible for general n. However, this current study builds upon this
work to indicate both the likelihood of this co-existence, and the effects of weakened
asymmetry in competition.

Before studying the effects of trade-offs on the co-existence of species, it is impor-
tant to clarify what we mean by co-existence. In its strongest sense, co-existence can
be taken to mean that all species present persist at a given positive equilibrium value.
This means that any mathematical model of the system will exhibit co-existence
if and only if there is a positive fixed point that is globally asymptotically stable,
in the sense that all initial conditions for which each species has positive density
end up at a positive equilibrium density. This is the notion of co-existence used
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by Strobeck (1973). Law and Morton (1996) uses a less stringent definition of co-
existence, namely that the system exhibits co-existence if all species densities remain
bounded and for all positive initial densities, there is a density δ > 0 such that all the
species eventually exceed δ, demonstrated mathematically by the concept of perma-
nence. In this study, a collection of species is considered to exhibit co-existence if the
model of those species exhibits permanence. However, as permanence is an imme-
diate consequence of a globally asymptotically stable equilibrium in the interior, the
existence of the latter is used to show co-existence in our discontinuous competition
model.

In later sections, we study n-species communities and investigate the likelihood of
co-existence given the model, and the trade-off function. Here, we assume commu-
nities are assembled randomly from a regional species pool where all species (trait
values) are present. We note that our results will be different to the expected number
of species that will evolve via small mutations from a mono-specific community; or
from community assembly by invasion of species one at a time; but in both cases
relatively high levels of co-existence are required for large communities to occur.

3 Results

3.1 Linear Competition

Suppose that the competitive advantage held by one species over another is a linear
function of the difference between the trait values of the two species. Then the com-
petition coefficients c(xi − xj ) in (1) are determined by use of the function given
in (2). In order to preserve the competition-fecundity trade-off, it is necessary that as
fecundity decreases—and the function p(xi) decreases—the competitive advantage
that the species holds over a fixed, weaker competitor is increasing. This translates
to the mathematical condition θ > 0. To simplify the calculations, it is assumed that
xi > xi+1, but the results shown apply to any ordering of species and, therefore, trait
values. The equations for the two species system are

dNx1

dt
= Nx1

{
p(x1) − κNx1 −

(
κ − θ(x1 − x2)

)
Nx2

}

dNx2

dt
= Nx2

{
p(x2) −

(
κ − θ(x2 − x1)

)
Nx1 − κNx2

}
.

This model admits an interior fixed point when

κ

θ

p(x2) − p(x1)

p(x2)
< x1 − x2 <

κ

θ

p(x2) − p(x1)

p(x1)
, (6)

and this is globally stable whenever it exists, since κ > 0 by assumption. Therefore,
co-existence is possible if the condition (6) is satisfied.

However, the limits of linear competition in giving rise to co-existence are shown
if a third species is introduced to the system. We now demonstrate that regardless of
the trait value this species holds, or the parameter values for κ, θ , it cannot form a
permanent three species system with the two already species present.
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Note that when Eq. (2) is used, the 3 × 3 matrix of competition coefficients has
a determinant of zero, i.e. is singular, and that therefore the model does not have a
unique equilibrium point in the interior. In Lotka–Volterra systems, this means that
the system does not exhibit permanence (Theorem 13.5.1 in Hofbauer and Sigmund
1998).

Therefore, no third species can form a permanent coalition with the two species
already present. We conclude that with a linear function for competition, a maximum
of two species can stably co-exist and when a third species is introduced, the model
exhibits neither asymptotic stability nor permanence. The linear trade-off case is de-
generate, but it is useful in illustrating the dependence of the model on the form of
the competition function. We therefore switch our attention to a model utilising a
non-linear competition function.

3.2 Generalised Competition in the Two Species Case

Consider a generalised competition function c(xi − xj ) = c(z), which is decreasing,
such that c(z) ≤ 0 for all z, for two species. These species are different in two aspects,
competitive ability and population growth rate (effectively K and r , respectively),
both of which are determined by a single parameter xi for species i. We assume
that growth rate decreases linearly with xi , such that xi can be considered as the
proportion of non essential resource dedicated to competitive strength at the expense
of population growth rate. It is simple to scale the model such that we can define
this growth rate by the function p(x) = 1 − x. This therefore means that competitive
ability must increase with xi when the second species remains unchanged. We assume
that the competition coefficients are a function of x1 − x2, so therefore can be treated
by a function c(z) of a single variable z. The competition coefficient cij gives the
negative effect of species j on species i, and is defined by c(xi − xj ). This means
that c(z) must be a monotonically decreasing function of z. Note the model can be
scaled to ensure c(0) = 1 without any loss of information.

If two species have identical competitive ability, but differ in growth rate, then the
faster growing species would competitively exclude the slower grower, so an essential
condition for co-existence is that c′(0) < 0.

Therefore, the system is given by

Ṅ1 = N1
(
1 − x1 − N1 − c(z)N2

)
, (7)

Ṅ2 = N2
(
1 − x2 − N2 − c(−z)N1

)
, (8)

where z = x1 − x2. The condition for global stability of an interior fixed point is then
given by c(z)c(−z) < 1, which is therefore a further condition on the function c(z)

for co-existence in the 2-species case.
It is simple to show that an interior fixed point is present when

1 − x1 − c(z)(1 − x2) > 0, (9)

1 − x2 − c(−z)(1 − x1) > 0. (10)
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Fig. 1 How the probability of
co-existence given by the
convex–concave function (4)
changes with the parameter Θ ,
which determines the steepness
of the curve. Shown are the
cases ε = 1 and ε = 1/2

By writing these as functions of z and x2, it is possible to rearrange to get

x2 <
1 − z − c(z)

1 − c(z)
, (11)

x2 >
(1 − z)c(−z) − 1

c(−z) − 1
. (12)

We now assume without loss of generality that species 1 is the competitively domi-
nant species, i.e. z > 0. Then if we define z∗ such that 1 − z∗ − c(z∗) = 0 and ẑ such
that 1 − (1 − ẑ)c(−ẑ) = 0, (defined uniquely for convex–concave functions where
zc′′(z) > 0 for z &= 0 and c′(0) < −1), then the area of co-existence can be found by

2
(∫ z∗

0
dz

1 − z − c(z)

1 − c(z)
−

∫ ẑ

0
dz

(1 − z)c(−z) − 1
c(−z) − 1

)
, (13)

where the factor of 2 is to include the other ordering of traits. It is relatively simple
to show that with these assumptions, coupled with the fact that c(−z) + c(z) = 2,
co-existence is only possible if c′(0) < −1 (Appendix A). This is in accordance with
the work of Adler and Mosquera, who state that mono-culture will prevail when the
steepness of the competition curve has magnitude less than 1.

As an example, we use the modified version of the function used by Kisdi
(1999) given by (4), scaled such that the intra-specific competition coefficients are
unity, and the parameter ε measured the greatest level of dominance possible, so
c(z) ∈ [1−ε,1+ε] for all z. There is an issue in that z∗ and ẑ as defined above cannot
be found by simply rearranging these equations. However, as demonstrated in Fig. 1,
when we numerically find the area of the region of co-existence, this area monoton-
ically decreases as the parameter Θ is increased. The likelihood of co-existence is
maximised at Θ = 0, where the competition coefficients are determined by a step
function. Using Taylor series expansions of the functions F1(z) = 1 − z − c(z) and
F2(z) = (1 − z)c(−z) − 1, we can show that the area of co-existence tends to the
results presented in Sect. 3.3 as Θ approaches 0.

As a further example, we can investigate the piecewise linear function (3), where
pairs of species with similar trait values will have different effects on one another than
pairs with different trait values, but that once a threshold of dissimilarity is passed, all
species have the same effect on one another. Note that this approximates the smooth
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function (4) considered above. This gives two cases, as the function (1 − z)−1 will
cross c(−z) on the constant part for small Θ , but the sloped part for slightly larger Θ .
The two cases are that where Θ < ε

(1+ε) and that where ε
(1+ε) < Θ < ε. In the case

where Θ is small, we can write the above integrals as

2
(∫ Θ

0

ε − Θ

ε
dz +

∫ ε

Θ
1 − z

ε
dz −

∫ Θ

0

ε − Θ

ε
− z dz −

∫ ε
1+ε

Θ
1 − 1 + ε

ε
z dz

)

= 2
(

Θ − Θ2

ε
+ ε

2
− Θ + Θ2

2ε
− Θ + Θ2

ε
+ Θ2

2
+ ε

2(1 + ε)2 + ε2

2(1 + ε)2

− ε

1 + ε
+ Θ − Θ2

2
− Θ2

2ε

)

= ε2

1 + ε
.

For larger Θ , we can write the integrals as

2
(∫ Θ

0

ε − Θ

ε
dz +

∫ ε

Θ
1 − z

ε
dz −

∫ ε−Θ
ε

0

ε − Θ

ε
− z dz

)

= 2
(

Θ − Θ2

ε
+ ε

2
− Θ + Θ2

2ε
− 1

2
+ Θ

ε
− Θ2

2ε2

)

= (ε − Θ)(Θ + ε(ε + Θ − 1))

ε2 .

We therefore find that the probability of two species co-existing is constant for small
Θ < ε/(1 + ε), and a decreasing function of Θ when the competitive difference
between similar species is smaller, i.e. when Θ is larger. Because in both this in the
concave–convex case, the step function limit serves to maximise the probability of
two species co-existing, we now consider the discontinuous case in more detail, as
this will give an upper bound on the probability of co-existence for n species.

3.3 Discontinuous Competition

In a similar model to that presented here, Adler and Mosquera (2000) demonstrated
how species richness increases with the gradient of the competition function at the
origin (i.e. when two individuals have the same trait value), and this is supported
by our results above. The logical extreme of this is that likelihood of co-existence
will be maximised if the gradient at the origin is infinite, and we therefore now con-
sider a step function for the competition coefficients, as given by (5). We note that
Nowak and May (1994) used a very similar model, although they were studying the
effects of superinfection on virulence in parasites rather than the number of different
strains or species that the model could support. We recognise that such a competition
gradient is unlikely to be found in nature (although Kubota & Hara found limited
evidence of total competitive asymmetry in trees species in Northern Japan (Kubota
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and Hara 1995)), but it is mathematically convenient to use this function to analyt-
ically investigate upper bounds for the levels of bio-diversity that can be supported
on a single trade-off. As illustrated for the two species case above, our results will
be very close to the case where the competition function is that used by Kisdi, and
the piecewise linear function, mentioned above when Θ is small, and also to the
competition-colonisation trade-off model of Tilman (1994) that assumes completely
asymmetric competition between individuals of different trait values. Biologically, a
species requires a positive growth rate p(xi) in order to be able to fixate in the envi-
ronment even in the absence of competition. Therefore, the range of trait values xi is
restricted such that for all possible xi , we have that p(xi) > 0. While we continue to
mostly consider the case p(xi) = 1−xi , we return to the more generalised notation to
illustrate that in this case, the methods can be used for non-linear p(xi). Note that for
the case p(xi) = 1−xi , the region of co-existence is unchanged from that considered
in p-space.

Recall that the model with the step function (5) determining competition is given
by

dNi

dτ
= Ni

(
p̄(xi) − (1 − ε)

∑

j∈Ai

Nj − Ni − (1 + ε)
∑

j∈Bi

Nj

)
, (14)

where p̄(xi) = p(xi)/ρ (with ρ = max0≤x≤1 p(x)), τ = ρt , Ai = {j : 1 ≤ j ≤
n,xj < xi} is the set of all species j with a lower trait value than species i, and
Bi = {j : 1 ≤ j ≤ n,xj > xi} is the set of all species with trait value greater than that
of species i. Note that either of these sets may be empty.

For convenience, we will now drop the bar on p, while remembering that now p

has a maximum value scaled to unity. When ε = 0, we get relative size independent,
neutral competition, and because one species has the inherent advantage in that it
experiences a higher population growth rate, only one species can exist, as shown in
Appendix B. When ε > 0, however, it is possible for more than one species to persist,
as we now show, starting with the two-species case.

If the model given by (1) and (5) has only two distinct species present, then it
is possible for both species to co-exist providing there is a globally stable interior
equilibrium point. Assuming x1 > x2 for simplicity of notation, and without loss of
generality, the model takes the form

dN1

dτ
= N1

(
p(x1) − N1 − (1 − ε)N2

)
,

dN2

dτ
= N2

(
p(x2) − (1 + ε)N1 − N2

)
.

(15)

For any interior fixed point to be stable the Jacobian matrix J at the fixed point
N∗ = (N∗

1 ,N∗
2 ) must have negative trace and positive determinant. The trace τ (J ) =

−(N∗
1 +N∗

2 ) is negative whenever the fixed point exists, and the determinant given by
)(J ) = ε2N∗

1 N∗
2 is similarly positive whenever there exists an interior fixed point.

Therefore, if the interior fixed point exists, it is globally stable. An interior steady
state exists when the bracketed terms in (15) are set to zero and the solution for
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Fig. 2 The regions of co-existence for two species are plotted in p-space. (a) shows the co-existence
regions for ε = 1 while the case ε = 1/2 is shown in (b). Shaded regions in the upper left half of the
plot are where both species co-exist with growth rates p1 < p2, or equivalently trait values x1 > x2. The
regions to the bottom right of the plots represent the alternative ordering p1 > p2, x1 < x2. (c) shows how
the probability of co-existence increases with the asymmetry parameter ε, with large values indicating
strong competitive asymmetry between individuals of different trait values

N1,N2 is positive. Therefore, the conditions for co-existence are given by

p(x2)

1 + ε
> p(x1) > p(x2)(1 − ε). (16)

Since the trait values are limited to a finite range, it is possible to calculate the
probability of co-existence for two species chosen at random from a uniform distri-
bution on x1, x2 ∈ [0,1] by calculating the size of the area within the unit box [0,1]2

which satisfies (16) as well as the assumption x1 > x2. Here, we first find the area
in p-space for which there exists an interior fixed point, and then from that calculate
the area in x-space. Since p is a decreasing function satisfying p(0) = 1,p(1) = 0, it
is invertible with increasing inverse p−1 that satisfies p−1(1) = 0, p−1(0) = 1, and
hence the range of p−1 is [0,1]. We first find the area in the p1,p2 plane, writing
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pi = p(xi) for simplicity of notation, for which

p2

1 + ε
> p1 > p2(1 − ε), (p1,p2) ∈ [0,1]2, (17)

and then map this to an area in x1, x2 space.
Since the case p(xi) = 1 − xi is linear and maps [0,1]2 onto itself, the probability

of co-existence is equal to the area of the x-space satisfying (16) which in turn equals
the area in p-space satisfying (17).

The areas satisfying these conditions for ε = 1 and ε = 1/2 are shown in Fig. 2. To
calculate the size of the area in the p1,p2 plane where both equilibrium populations
are greater than zero, we note that when (17) intersects the unit box, it forms a triangle
T with vertices (0,0), (1 − ε,1) and (1/(1 + ε),1). The area of T in the p1,p2 plane
is therefore given by

1
2

(
1

1 + ε
− (1 − ε)

)
= ε2

2(1 + ε)
,

which is then multiplied by two to account for the other ordering of trait values
p2 < p1 (i.e. x2 > x1) to give the area as

A = ε2

1 + ε
.

This area is an increasing function in ε, meaning that the greater the asymmetry
observed in the competition between species, the more likely it is that two species
can co-exist together, as anticipated by our numerical simulations of the concave–
convex function and analytical work on the piecewise linear function. Note that the
result here is identical to that when Θ is small in the piecewise linear case.

3.3.1 Communities with n-Species

In communities with n > 2 species present, any interior fixed point is unique and
globally stable. While Nowak and May (1994) state that this result holds with a mod-
ification of the theory in Chap. 21.3 of Hofbauer and Sigmund (1998), we include
our own proof in Appendix C.

In order to find the region of trait space that permits an interior fixed point, we
consider the model written in the form

dNi

dτ
= Ni

(

pi(x) −
n∑

j=1

cij (x)Nj

)

, (18)

where the cij (x) competition coefficients combine to give the competition matrix
C(x). In Appendix D, we show that the volume of co-existence can be calculated
from a determinant and is given explicitly by

Vn =






εn

(1+ε)n−1 even n ≥ 2,

εn−1

(1+ε)n−1 odd n ≥ 3.
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Fig. 3 How the probability of co-existence for different numbers n of species decreases with n is shown,
along with how it changes with ε, shown for n = 3,4,5 species co-existence

Therefore, for all 0 < ε ≤ 1, it is possible for any number n of species to co-exist
along a single competition-fecundity trade-off. However, it is increasingly difficult
for all species to co-exist as the number of species in the environment increases, as
shown by Fig. 3.

4 Discussion

Life-history trade-offs have a rich history in helping to explain how competitors may
co-exist, but relatively few studies have quantified how rapidly the likelihood of co-
existence declines with increasing number of species within the community. Here,
we have considered a trade-off between competitive ability and fecundity and have
shown the probability of multiple species co-existence depends critically on the de-
gree of asymmetry ε between them. Large values for ε indicate large competitive
asymmetry between species with even nearby trait values, and it is here that co-
existence is found to be most likely (see Fig. 3). However, as the number of species
drawn from the pool increases, even small decreases in the competitive asymmetry
can lead to rapid declines in the likelihood of co-existence. The probability of sus-
taining at least two species also depends on the slope of the competition function at
c(z = 0), and this is determined by the parameter Θ . As Θ decreases, the steepness
of the competition curve increases, and so does the probability of the trade-off main-
taining multiple species. Therefore, maximum co-existence is likely to be achieved
at high ε and low Θ .

The trade-off considered here is essentially the same as the competition-colonisa-
tion trade-off, which has been much studied theoretically (e.g. Levin and Paine
1974; Hastings 1980; Tilman 1994) and empirically (e.g. Turnbull et al. 1999;
Robinson et al. 1995; Cadotte 2007). Although early theory suggested any num-
ber of species might be able to co-exist on this trade-off (May and Nowak 1994;
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Tilman 1994), as we have shown here, co-existence is dependent upon the steep-
ness of the trade-off function, and also on the amount of asymmetric competition
between the species. Recent theory that builds on this trade-off has shown that high
levels of co-existence are possible on a tolerance-fecundity trade-off, where species
with seeds that can tolerate wide ranges in environmental conditions are assumed to
be larger and, therefore, fewer in number (Muller-Landau 2010). However, this still
invokes strong competitive asymmetry because smaller seeded species are unable to
germinate in environments outside of their tolerance zone, and it is probable that even
some ability to germinate in non-preferred patches might greatly reduce the amount
of co-existence that is possible.

Our results connect to the results of Adler and Mosquera (2000), who showed
the shape of the trade-off to be important for the number of species that can co-
exist; and with HilleRisLambers and Dieckmann (2003) who found strong trade-
offs tend to enhance the co-existence of two species sharing one resource. We have
extended this work to consider how rapidly the area for coexistence in trait-space
diminishes with the number of species in the community. Our analyses reveal that
even with the trade-off assumptions that most favour co-existence, the likelihood of
co-existence diminishes very rapidly with the number of species, and this suggests
relatively few species are ever likely to be able to co-exist on one trade-off. Moreover,
our results reveal that competitive asymmetry becomes more important in generating
co-existence as the number of species increases (Fig. 3; Eq. (23)).

The methods we use are similar to those of Meszena et al. (2006) who calculated
the likelihood of an interior fixed point existing and its dependence on their model
parameters. However, we note the existence of an interior fixed point is not sufficient
for co-existence. For example, the symmetric May–Leonard model for three species
(May and Leonard 1975), always admits an interior equilibrium, yet the system only
exhibits permanence when for each species, intra-specific competition is greater than
twice the sum of the interspecific effects of the other two species. As such, their model
represents an upper bound to the likelihood of co-existence. In the current paper,
we address this by proving that the existence of an interior equilibrium is exactly
equivalent to the permanence of the system, therefore, adding to the conclusions made
by Meszena et al. (2006).

Our results therefore show how important competitive asymmetry is in generating
and maintaining large numbers of co-existing species; but how prevalent is com-
petitive asymmetry in natural communities? There is a large body of work to sug-
gest competitive asymmetry is common in animal (e.g. Lawton and Hassell 1981;
Morin and Johnson 1988; Resetarits 1995; Costanzo et al. 2005) and plant com-
munities (e.g. Weiner 1990; Connolly and Wayne 1996; Keddy et al. 1997). How-
ever, to our knowledge, except for seed size variation in plants (e.g. Turnbull et al.
1999), this competitive asymmetry has rarely been connected to a life-history trade-
off. It is worth noting that many of these studies consider only two species, and the
competition coefficients are often measured under one set of environmental condi-
tions, so it is not clear how much this asymmetry extends into large communities
of competitors, and whether there is a temporal fluctuation in the competitive hier-
archy. One exception to this is a study by Keddy et al. (1997) who measured the
competitive asymmetry between pairs of plant species drawn from a pool of 18



A
U

TH
O

R
’S

 P
R

O
O

F

Journal ID: 11538, Article ID: 9755, Date: 2012-07-17, Proof No: 1, UNCORRECTED PROOF

« BMAB 11538 layout: Small Extended v.1.1 file: bmab9755.tex (ELE) class: spr-small-v1.3 v.2012/05/30 Prn:2012/07/17; 8:38 p. 15/24»
« doctopic: OriginalPaper numbering style: ContentOnly reference style: apa»

Quantifying the Likelihood of Co-existence for Communities

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

species. Their work concluded that in fact competitive asymmetry increased with
soil productivity, and this is because light rather than soil nutrients became the lim-
iting factor, and generally competition for light is expected to be size asymmet-
ric, whereas competition for soil nutrients is usually size symmetric (e.g. Weiner
1990).

The model we analyse here is biologically rather simple, and there is much scope
for extensions that incorporate more realism. For example, as for most other mod-
els that study the competition-fecundity or competition-colonisation trade-offs, we
assume that intra-specific competition is identical for all trait values (Eq. (14)); but
it might be more realistic to assume that smaller individuals are better able to share
resources than larger individuals, meaning the intra-specific competition term now
has to be trait dependent as well. We believe relaxing this assumption would yield
rather more complex dynamics than the current model, including the possibility of
founder control (i.e. unstable interior equilibria). For example, Calcagno et al. (2006)
incorporated priority effects, whereby an adult plant cannot be displaced be a seed,
into a competition-colonisation model, and showed that this can actually increase co-
existence. However, when maximum colonisation rate, analogous to our maximum
population growth rate, is heavily limited, such preemptive competition generally
ceases to be beneficial to co-existence. Therefore, this would reduce the amount of
co-existence compared to that found here, and would place greater dependence on
multiple trade-offs or other processes to generate co-existence between large num-
bers of species.

The models presented here have assumed linear intrinsic growth rate p in the ab-
sence of competition, and linear or piecewise constant competition for communities
with three or more species. Non-linearity, with suitable monotonicity conditions, can
be easily incorporated into the function p, and the volume in x-space can then be
found through a change of variable in the volume integral. Moreover, changing p

does not impact on the globally stability of interior steady states, which as shown,
depends solely on the competition matrix C. For models with three or more species,
studying non-linear competition functions gives the difficulty of not only finding vol-
umes in space enclosed between curved surfaces, but also determining which points
in these volumes are globally stable. The alternative, focusing on co-existence mea-
sured by permanence, also presents a serious challenge due to the lack of necessary
and sufficient conditions for permanence in general competitive Lotka–Volterra mod-
els for n > 3.

These extensions aside, we have shown here that competitive asymmetry could
be very important in maintaining several species on a single trade-off; but that for
large numbers of species multiple trade-offs; and/or other processes such as distur-
bance or natural enemies are required to maintain diverse competitive communities.
Nonetheless, it is clear that competitive asymmetry which is widely observed in
empirical studies could still interact with these other processes to increase, rather
than decrease bio-diversity as has often been supposed (e.g. Keddy et al. 1997;
Resetarits 1995).
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Appendix A

We note that since c(z)+ c(−z) = 2 constant, we have that c(−z)− 1 = 1 − c(z) > 0
for positive z. Therefore, we can subtract (12) from (11) to get

(1 − z − c(z)) − ((1 − z)c(−z) − 1)

c(−z) − 1
= z(c(−z) − 1)

(c(−z) − 1)
= z.

Therefore, the upper and lower bounds for x2 coincide at z = 0, and for z > 0 the
upper bound is always greater than the lower, i.e. there is always a region where co-
existence is possible. Therefore, if the upper bound (11) is non-increasing, both it and
the lower bound (12) never exceed the value they achieve at z = 0, and there is only
a region of co-existence in the positive quadrant when the limit

lim
z→0

1 − z − c(z)

1 − c(z)
> 0.

As both numerator and denominator tend to zero, we use l’Hopital’s rule to get that
this limit is given by

−1 − c′(0)

−c′(0)
,

which is positive for c′(0) < −1.
It remains to demonstrate that (11) is non-increasing for positive z. The derivative

of the function is given by

c(z) − 1 − zc′(z)
(1 − c(z))2 .

If c′(z) = 0, then this becomes

−1
1 − c(z)

< 0,

since c(z) < 1 for all z > 0. When c′(z) < 0, then we note that the function is non-
increasing for

z ≤ c(z) − 1
c′(z)

.

The derivative of the right-hand side is given by

1 − c′′(z)(c(z) − 1)

c′(z)2 ,

which is greater than one for all positive z. Therefore, this point increases faster
than z. Noting that the derivative of (11) is zero when z = 0, we can therefore con-
clude that for all z > 0, this upper bound is indeed non-increasing.
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Appendix B

Without losing any generality, we can order traits such that x1 > x2 > · · · > xn so that
since p is decreasing, p(x1) < p(x2) < · · · < p(xn). When ε = 0, Eqs. (14) become

dNi

dτ
= Ni

(

p(xi) −
n∑

j=1

Nj

)

, i = 1, . . . , n.

Thus, if i < k,

d

dτ
log(Ni/Nk) = p(xi) − p(xk) < 0.

This shows that for i < k

Ni(τ ) = Nk(τ )e(p(xi )−p(xk))τ → 0, τ → ∞,

since N(t) is bounded. This shows that Ni(τ ) → 0 as τ → ∞ for i = 1,2, . . . , n− 1.
It is intuitive that the remaining species density Nn(τ ) → p(xn) as τ → ∞. This
can be shown by first noting that the equation for the dynamic of Nn reduces to the
time-dependent logistic equation:

Ṅn = p(xn)Nn

(
1 − Nn

K(t)

)
, (19)

where the time-dependent carrying capacity is given by

K(t) = p(xn)e
p(xn)t

/(
n∑

i=1

ep(xi )t

)

.

One may verify that the explicit solution to (19) is

Nn(t) = Nn(0)ep(xn)t

1 + Nn(0)
∑n

i=1(
ep(xi )t−1

p(xi )
)

→ p(xn) as t → ∞.

We have thus shown that the species with minimum trait 0 will send any other species
to extinction.

Appendix C

Lemma 1 Whenever an interior fixed point exists for the n-species model given by
(14), it is both unique and globally asymptotically stable relative to the interior of the
region of space where all Ni are positive and, therefore, the system displays perma-
nence.

Proof It is well known that when (1) admits an interior steady state, it is globally sta-
ble (also known as LV-stable) if the matrix −C = ((−cij (x))) is dissipative, that
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is, there exists a positive diagonal matrix D such that the real symmetric matrix
D(−C) + (−C)T D is negative definite and, therefore, has only negative eigenvalues
(e.g. Hofbauer and Sigmund 1998). For the model with discontinuous competition,
the competition matrix takes the form (in the region x1 > x2 > · · · > xn) given by
Eq. (22). Let D be a positive diagonal matrix with diagonal entries θi (i = 1, . . . , n).
Then (1), with competition matrix C as in (22), admits a fixed point that globally
attracts interior trajectories whenever the real symmetric matrix A = (DC + CT D),
given by




2θ1 (1 − ε)θ1 + (1 + ε)θ2 · · · (1 − ε)θ1 + (1 + ε)θn

(1 − ε)θ1 + (1 + ε)θ2 2θ2 · · · (1 − ε)θ2 + (1 + ε)θn

(1 − ε)θ1 + (1 + ε)θ3 (1 − ε)θ2 + (1 + ε)θ3 · · · (1 − ε)θ3 + (1 + ε)θn

...
...

. . .
...

(1 − ε)θ1 + (1 + ε)θn (1 − ε)θ2 + (1 + ε)θn · · · 2θn





has all positive eigenvalues, which is the case if all the leading principal minors are
positive.

We have fixed θi > 0 positive, so we restrict ourselves to looking at m×m leading
principal minors of the matrix A with m ≥ 2:

∣∣∣∣∣∣∣∣∣

2θ1 (1 − ε)θ1 + (1 + ε)θ2 · · · (1 − ε)θ1 + (1 + ε)θm

(1 − ε)θ1 + (1 + ε)θ2 2θ2 · · · (1 − ε)θ2 + (1 + ε)θm

...
...

. . .
...

(1 − ε)θ1 + (1 + ε)θm (1 − ε)θ2 + (1 + ε)θm · · · 2θm

∣∣∣∣∣∣∣∣∣

.

As the determinant of a matrix is not changed when one row or column is subtracted
from another, we then subtract the (m − 1)th column from the mth column, and the
ith column from the (i + 1)th column for all 1 ≤ i ≤ m − 1 to obtain the matrix

∣∣∣∣∣∣∣∣∣

2θ1 (1 + ε)(θ2 − θ1) · · · (1 + ε)(θm − θm−1)

(1 − ε)θ1 + (1 + ε)θ2 (1 − ε)(θ2 − θ1) · · · (1 + ε)(θm − θm−1)
...

...
. . .

...

(1 − ε)θ1 + (1 + ε)θm (1 − ε)(θ2 − θ1) · · · (1 − ε)(θm − θm−1)

∣∣∣∣∣∣∣∣∣

.

Removing the common factors in columns 2 up to m give that the determinant has a
factor

(−1)m−1
m−1∏

i=1

(θi − θi+1)

which is then multiplied by
∣∣∣∣∣∣∣∣∣∣∣

2θ1 1 + ε 1 + ε · · · 1 + ε

(1 − ε)θ1 + (1 + ε)θ2 1 − ε 1 + ε · · · 1 + ε

(1 − ε)θ1 + (1 + ε)θ3 1 − ε 1 − ε · · · 1 + ε
...

...
...

. . .
...

(1 − ε)θ1 + (1 + ε)θm 1 − ε 1 − ε · · · 1 − ε

∣∣∣∣∣∣∣∣∣∣∣

.
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Subtracting row m − 1 from row m, and row i from row i + 1 for all i < m gives this
determinant as

∣∣∣∣∣∣∣∣∣∣∣

2θ1 1 + ε 1 + ε · · · 1 + ε

(1 + ε)(θ2 − θ1) −2ε 0 · · · 0
(1 + ε)(θ3 − θ2) 0 −2ε · · · 0

...
...

...
. . .

...

(1 + ε)(θm − θm−1) 0 0 · · · −2ε

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

2θ1 1 + ε 0 0 · · · 0
(1 + ε)(θ2 − θ1) −2ε 2ε 0 · · · 0
(1 + ε)(θ3 − θ2) 0 −2ε 2ε · · · 0

...
...

...
...

. . .
...

(1 + ε)(θm − θm−1) 0 0 0 · · · −2ε

∣∣∣∣∣∣∣∣∣∣∣

= (−1)m−1θ12mεm−1 − (1 + ε)2(2ε)m−2(−1)m−2(θ2 − θ1 + θ3

− θ2 + · · · + θm − θm−1)

= (−1)m(2ε)m−2((1 − ε)2θ1 − (1 + ε)2θm

)
.

Therefore, the m × m leading principal minor for m > 1 is given by

−(2ε)m−2((1 − ε)2θ1 − (1 + ε)2θm

)m−1∏

i=1

(θi − θi+1). (20)

It remains to be shown that the θi can be chosen such that all leading principal minors
(20) are positive, which is the case when ((1−ε)2θi −(1+ε)2θj ) < 0 and (θi −θj ) >

0 for i < j . Setting

θi = n − 1
(1 + ε)n+1−i

,

then we can use j − i ≥ 1 to calculate that

θi − θj =
(

n − 1
(1 + ε)n+1−i

)
−

(
n − 1

(1 + ε)n+1−j

)

= (1 + ε)j−i − 1
(1 + ε)n+1−i

≥ 1 + ε − 1
(1 + ε)n+1−i

> 0.

To show that ((1 − ε)2θi − (1 + ε)2θj ) < 0, we note that

(
(1 − ε)2θi − (1 + ε)2θj

)
<

(
(1 − ε)2θ1 − (1 + ε)2θj

)

<
(
(1 − ε)2θ1 − (1 + ε)2θn

)
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and that for ε = 0, we have ((1 − ε)2θ1 − (1 + ε)2θn) = 0. Differentiating this with
respect to epsilon gives

d

dε

(
(1 − ε)2θi − (1 + ε)2θj

)
= −4n + 1 + 2

1 − ε

(1 + ε)n
+ n

(1 − ε)2

(1 + ε)n+1

≤ −4n + 1 + 2 + n < 0

for all 0 ≤ ε ≤ 1 and n ≥ 2. Therefore, since ε = 0 is a root for the function, for any
ε > 0, we have

(
(1 − ε)2θ1 − (1 + ε)2θn

)
< 0

and therefore
(
(1 − ε)2θi − (1 + ε)2θj

)
< 0.

Therefore, all the leading principal minors are positive, meaning that A = DC +
CT D is positive definite. Therefore, D(−C) + (−C)T D is negative definite, as re-
quired for global stability. Global stability immediately implies permanence. !

Appendix D

Here, we calculate the probability of co-existence for an n species version of (14).
Since we are using the step function (5), the matrix C(x) is piecewise constant. At the
interior fixed point, the bracketed terms are equal to zero, which therefore reduces the
model to p(x) = C(x)N, with p the vector of the growth rate of each species and N
the vector with ith component Ni . Since C(x) is non-singular, this is the rearranged
to give the solution N = C−1(x)p(x). We are interested in the volume of x-space
for which N = C−1(x)p(x) > 0. To find this volume, we find the volume in p-space
where p1 < p2 < · · · < pn which satisfies, since then x1 > x2 > · · · > xn and so C(x)
is a constant, and non-singular matrix C, so that

C−1p = 0. (21)

Equation (21) defines a series of planes in p-space that all pass through the origin.
When an ordering pn > pn−1 > · · · > p1 is assumed without any loss of generality,
these planes form an n dimensional pyramid when intersected with the unit cube. The
volume of this pyramid is then the probability of the n species model permitting an
interior fixed point and, therefore, the probability of all n species co-existing due to
the stability result in Appendix C.

With the ordering p1 < p2 < · · · < pn, equivalent to x1 > x2 > · · · > xn, the com-
petition matrix C takes the form

C =





1 1 − ε 1 − ε · · · 1 − ε

1 + ε 1 1 − ε · · · 1 − ε

1 + ε 1 + ε 1 · · · 1 − ε
...

...
...

. . .
...

1 + ε 1 + ε 1 + ε · · · 1




. (22)
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It is relatively simple to show that C is non-singular, allowing us to calculate the
volume of the n dimensional pyramid. We need to find the n points at which n of
the planes intersect the face pn = 1. To find these points, we note that the edges
of the n dimensional pyramid must be orthogonal to each of the n − 1 planes in
p-space defined by (21) that meet at that edge. Since C−1C = In, each column of
C is orthogonal to all bar one of the rows of C−1 Therefore, the edges of the n

dimensional pyramid point in the direction of the columns of C. These edges meet
the plane pn = 1 at the non-zero corners of the n dimensional simplex, so it is simple
to show that these points are given by the columns of C, scaled such that the value of
pn = 1. Therefore, the n non-zero vertices of the simplex that lie in the plane pn = 1
are given by

(
1

1 + ε
,1,1,1, . . . ,1

)
,

(
1 − ε

1 + ε
,

1
1 + ε

,1,1, . . . ,1
)

,

(
1 − ε

1 + ε
,

1 − ε

1 + ε
,

1
1 + ε

,1, . . . ,1
)

,

...
(

1 − ε

1 + ε
,

1 − ε

1 + ε
,

1 − ε

1 + ε
, . . . ,

1
1 + ε

,1
)

,

(1 − ε,1 − ε,1 − ε, . . . ,1 − ε,1).

Theorem 1 The probability of co-existence, is given by

Vn = P(coexistn) =
{

εn

(1+ε)n−1 even n ≥ 2,

εn−1

(1+ε)n−1 odd n ≥ 3.
(23)

Proof The volume of the n dimensional simplex is given by

V̄n = 1
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1+ε 1 1 1 · · · 1 1
1−ε
1+ε

1
1+ε 1 1 · · · 1 1

1−ε
1+ε

1−ε
1+ε

1
1+ε 1 · · · 1 1

...
...

...
...

. . .
...

1−ε
1+ε

1−ε
1+ε

1−ε
1+ε

1−ε
1+ε · · · 1

1+ε 1

1 − ε 1 − ε 1 − ε 1 − ε · · · 1 − ε 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Since there are n! of these volumes, one for each ordering of the traits, so the total
volume is Vn = n!V̄n. Let Un = n!(1 + ε)n−1V̄n. Then
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Un =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 + ε 1 + ε 1 + ε · · · 1 + ε 1 + ε

1 − ε 1 1 + ε 1 + ε · · · 1 + ε 1 + ε

1 − ε 1 − ε 1 1 + ε · · · 1 + ε 1 + ε
...

...
...

...
. . .

...

1 − ε 1 − ε 1 − ε 1 − ε · · · 1 1 + ε

1 − ε 1 − ε 1 − ε 1 − ε · · · 1 − ε 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We now show that Un = ε2Un−2. To see this, first subtract the second row from the
first row. Having done this, in the new determinant subtract the first column from the
second column. This gives

Un =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ε 0 0 0 · · · 0 0
1 − ε ε 1 + ε 1 + ε · · · 1 + ε 1 + ε

1 − ε 0 1 1 + ε · · · 1 + ε 1 + ε
...

...
...

...
. . .

...

1 − ε 0 1 − ε 1 − ε · · · 1 1 + ε

1 − ε 0 1 − ε 1 − ε · · · 1 − ε 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which gives Un = ε2Un−2 as required. Now quick calculations show that U2 = ε2

and U3 = ε2 so that Un = εn for n ≥ 2 even and Un = εn−1 for n ≥ 3 odd.

V̄n = 1
n!

εn

(1 + ε)n−1 n even,

= 1
n!

εn−1

(1 + ε)n−1 n odd.

Vn =
{

εn

(1+ε)n−1 even n ≥ 2,

εn−1

(1+ε)n−1 odd n ≥ 3. !
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