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Methane is an important greenhouse gas, contributing 22% to the increased radiative forcing over 150 years, and emissions from wet-
lands are key to its global dynamics. A general model of methane dynamics is presented that emphasizes the impact of external climate
factors on methane production and oxidation. The model consists of two uncoupled bacterial populations, each following a logistic
growth pattern, and a third differential equation, dependent on these two populations, that represents the concentration of stored
methane in wetland soils. This is related to methane emissions into the atmosphere. Several simplified models are also presented to
demonstrate the development of the model from the basic processes occurring in the soil. Analysis of the model shows a stable equili-
brium point for the methane concentration. This equilibrium is subject to short-term forcing by climate, specifically changes in temp-
erature and water table depth. Parameters for this model are then fitted to real data taken from a wetland site in Teesdale, and this
forcing is shown to account for much of the observed variation in methane emissions. An attempt to extend this model to longer
time scales is made, by considering the average climate. This extension is shown to be unsuccessful through considering Taylor’s
theorem and its implications for the model. Finally, a simplistic approximation to climate change is made, and the consequences of
these changes on methane emissions predicted by the model are presented. These consequences are found to include negative feed-
back, where the change in climate eventually results in lower emissions of methane.
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Introduction
Methane (CH4) is a very potent greenhouse gas, roughly 25

times as strong as carbon dioxide.1 This means it is an impor-

tant factor when considering climate change, contributing

"22% of the global greenhouse effect.2 Wetlands are the

source of over 40% of annual global methane emissions,3 so

an understanding of the emissions from these areas is crucial

to furthering our understanding of climate change. In order

to predict the probable effects of climate change, a model

that accurately predicts methane emissions is required. This

would allow accurate simulations of methane flux into the

future, in turn presenting opportunities to affect policy and

the management of greenhouse gas emissions.

This article aims to construct a simple mathematical

model based primarily on the effects of external factors

such as climate, but also considering the implications of

laboratory work on the biochemical factors involved. The

model dynamics are considered, and the response to

increased temperature and precipitation, according to pro-

jected trends, is simulated. The objective was to accurately

represent the emissions of methane from the wetland

environment and study the consequences of realistic assump-

tions on emissions over a period of "300 years. This

300-year time period is arbitrary, but it illustrates an impor-

tant change in the system’s dynamics; a transition from posi-

tive to negative feedback.

Model development
A simple model

Any model of methane emissions from wetlands must take

into account the three main processes within the soil.
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These are methane production in anaerobic conditions,

methane oxidation in aerobic conditions and the flux of

methane from the soil into the atmosphere.4 Clearly, pro-

duction increases soil methane concentrations, whereas the

other processes reduce methane concentration in the soil.

The production of methane is highly dependent on soil

temperature,4 as increased temperature results in an increase

in soil temperature. This dependence takes a well-

documented exponential form, so that production P satisfies

PðTÞ ¼ pQðT&TmÞ=10
10 ; ð1Þ

for constant p, temperature T and the average temperature

Tm, at which the rate of production is known or can be cal-

culated. The constant Q10 determines how rapidly pro-

duction increases with temperature. However, by also

considering the underlying biochemistry, we can make our

model more realistic. Production occurs when methano-

genic bacteria facilitate the following two chemical

reactions:

CH3COOH ! CH4 þ CO2; ð2Þ

CO2 þ 4H2 ! CH4 þ 2H2O: ð3Þ

We assume that the archaea facilitate these reactions in

accordance with the law of mass action, so that a reaction

A þ B! C occurs at a rate proportional to [A][B], where

[X ] denotes the concentration of substance X. Because the

reactions are dependent on the presence of methanogens,

we assume the rate to be proportional to the methanogen

biomass. This results in the production term of our model

becoming

P ¼ pQðT&TmÞ=10
10 Bmgð½CH3COOH( þ ½CO2(½H2(4Þ: ð4Þ

Here, Bmg is the methanogenic biomass and p a constant

representing the effectiveness of the bacteria facilitating the

reaction.

Similarly, bacteria, this time methanotrophic, facilitate the

oxidation of methane in aerobic soils, via the following reac-

tion:

CH4 þ 2O2 ! CO2 þ 2H2O: ð5Þ

Again, we assume the reaction to adhere to the law of

mass action, and also for the rate to be proportional to the

methanotrophic bacterial biomass, which is denoted by

Bmt. It has also been shown5 that decomposition has a

similar temperature dependence to production. However,

temperature has much less effect on oxidation,5 and so we

denote the temperature dependence constant by q10.
Combining this with the law of mass action acting on the

oxidation equation, we get a decomposition term of

R ¼ kqðT&TmÞ=10
10 Bmt½CH4(½O2(2: ð6Þ

This leaves transfer of methane from the soil to the atmos-

phere. There are three main forms for this to occur: diffusion

across the soil–air boundary; ebullition—where methane

bubbles up through the soil; and plant-mediated transport.

Diffusion occurs across concentration gradients, and

because the concentration of methane in the atmosphere is

so low, we assume diffusion to be proportional to the soil

methane concentration. Both ebullition and plant-mediated

transport are also dependent on the amount of methane in

the soil, so both these are set proportional to the soil

methane concentration. As such the flux from soil to atmos-

phere is given simply by a constant U multiplied by the soil

methane concentration. Combining this with the production

and oxidation terms, we get

d½CH4(
dt

¼ pQðT&TmÞ=10
10 Bmgð½CH3COOH( þ ½CO2(½H2(4Þ

& kqðT&TmÞ=10
10 Bmt½CH4(½O2(2 &U½CH4(; ð7Þ

where the values of all substance concentrations except

methane are kept constant to preserve simplicity.

We also introduce variable bacterial dynamics for each of

the populations. Taking the biomass to follow the logistic

model, we get

dBmg

dt
¼ rmgBmg 1&

Bmg

a

! "
; ð8Þ

dBmt

dt
¼ rmtBmt 1& Bmt

b

! "
; ð9Þ

where rmg and rmt are the respective growth rates of Bmg and

Bmt, when there is no competition and resources (in this case,

substrate) are plentiful, and a and b are the maximum bio-

masses that can be sustained by the environment. These are

considered constant in the current model to preserve

simplicity.

Phase portrait analysis

We now have a three-dimensional model given by Equations

(7–9). However, the equation for Bmt is uncoupled, with an

unstable fixed point at Bmt ¼ 0 and a stable fixed point at

Bmt ¼ b. We can now simplify our model by noting that

methanotrophic bacteria reproduce much faster than metha-

nogens, with a typical growth rate between 14% and 34%

per hour,6 as opposed to 40% per day for methanogens.7

We can therefore assume that the methanotrophs reach

their equilibrium point much faster, and so we can consider

them as a constant b. This reduces our model to a two-
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dimensional problem. We then further simplify it by trans-

forming the equations into a dimensionless form. Setting

½CH4( ¼
ffiffiffiffiffiffiffi
a

rmg

r pQðT&TmÞ=10
10 ½CH3COOH( þ ½CO2(½H2(4

$ %

kqðT&TmÞ=10
10 b½O2(2 þU

x;

ð10Þ

Bmg ¼
ffiffiffiffiffiffiffi
a

rmg

r
y; ð11Þ

t ¼ 1

kqðT&TmÞ=10
10 b½O2(2 þU

t; ð12Þ

and labelling kqðT&TmÞ=10
10 b½O2(2 þU ¼ b, and differentiating

with respect to t, we get the simplified dynamical system

dx

dt
¼ y& x; ð13Þ

dy

dt
¼

rmg

b
y& y2: ð14Þ

The fixed points for this system are at (x, y) ¼ (0, 0) and

(x, y) ¼ (rmg/b, rmg/b). Using linear stability analysis, we

see that the origin is a saddle point, with stable manifold

along the x-axis, and unstable manifold with positive slope

along the eigenvector (1, (rmg þ b)/b). The second fixed

point, (rmg/b, rmg/b), is a stable node for rmg = b. There is

a heteroclinic trajectory leaving the saddle point along the

unstable manifold, tending to the stable node. The phase

portrait for this system is shown in Fig. 1.

Once the system reaches the equilibrium point with con-

centration [CH4]*, the flux is given by

Flux ¼ U½CH4()

¼ U
pQðT&TmÞ=10

10 a ½CH3COOH( þ ½CO2(½H2(4
$ %

kqðT&TmÞ=10
10 b½O2(2 þU

; ð15Þ

where [CH4]* is found by setting Equation (7) equal to zero.

Climate forcing

Until now, we have operated with the assumption of a con-

stant climate. This is clearly a gross simplification, and so

now we look to introduce climate forcing. Figure 2 shows

temperatures for each day throughout 1995 at the

Moorhouse site in Teesdale. The figures are reached by

recording the temperatures daily at the surface, and at

depths of 10, 30 and 100 cm, and taking the average of

the four. We use the average as we are not considering the

spatial distribution of resources within the soil. We now

make the simplifying assumption that the soil processes on

day i are only affected by the climate on day i, so that the

temperature and water table from the previous days have

no effect on the flux. A further initial assumption, taking

our lead from other wetland studies,8 is that all dynamics

are fast, so both bacterial biomasses and methane concen-

tration track at their respective equilibrium values.

However, temperature is not the only important climate

factor to consider. We have assumed thus far that water

table depth has no effect. However, this approximately

marks the boundary between the anaerobic soil, where pro-

duction primarily occurs, and the aerobic area of the soil,

where oxidation occurs.9 Figure 3 shows the depth of the

water table throughout 1995. As such, we now assume

that production occurs exclusively below the water table,

Figure 1. Phase portrait of the system given by Equations (7) and (8).
Included are the heteroclinic orbit from the saddle at the origin to the
stable node at (rmg/b, rmg/b), and three other trajectories exemplifying
the global stability of the node. Parameter values are rmg ¼ 3 and b ¼ 4,
which are not based on data but demonstrate the general behaviour
sufficiently.

Figure 2. Soil temperature at the Moorhouse site throughout 1995. The
value displayed is an average of the recorded temperature at four different
depths.
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whereas oxidation is restricted to the aerobic area between

the surface and the water table. Studies have shown that

methane fluxes controlled by conditions close to the

surface and are not affected by production at lower levels.

As such, we assume that production occurs in an area of

constant size below the water table, allowing us to retain a

constant methanogen carrying capacity a. However, metha-

notrophs require oxic soil, so if the water table is at or above

the surface, little or no oxidation can occur. When the water

table is below the surface, these bacteria can facilitate the

oxidation of methane. Also, there are small areas of

aerobic soil around plant roots that supplied oxygen via

the plant, even when surrounded by saturated soil. This

results in a methanotrophic-carrying capacity that is depen-

dent on water table depth. Assuming that the bacteria are

spread evenly throughout the soil, we get a linear relation-

ship, such that

b ¼ gð1þ cWÞ; ð16Þ

where W is the maximum of 0 and w, the distance down

from the surface to the water table, g determines the

amount of oxidation when the whole soil profile is saturated

and c is a scaling constant reflecting the amount of bacteria

the environment can sustain in an area of 1 cm depth.

Assuming that our model tracks the equilibrium (i.e.

assuming that the ecological dynamics are sufficiently fast)

gives us the new flux model

Flux ¼ F ¼ U
pQðT&TmÞ=10

10 a½S(
kqðT&TmÞ=10

10 gð1þ cWÞ½O2(2 þU
; ð17Þ

where the notation is simplified by setting ([CH3COOH] þ
[CO2][H2]

4) ¼ [S].

Selecting the parameters from within the ranges in the lit-

erature, the value of Equation (17) was then calculated for

the temperature and water table depth of each day during

1995. This simulation, along with the observed methane

emissions from the site, is shown in Fig. 4. From the figure,

we can see that our model does indeed qualitatively mirror

the observed data, predicting high emissions, where high

emissions were observed, and low emissions, where the

recorded flux was lower. However, we must note that our

model does not decrease as much as the observed flux

between days 200 and 240. Figure 3 shows that this

period, days 200–240, is when the water table is deepest

below the surface, suggesting that our model overestimates

the flux when the water table is deep. We also note that

our model underestimates flux during much of spring,

suggesting that there are more factors and processes to be

considered.

Root-facilitated methane production

The model outlined above limits methane production to a

zone just below the water table, where conditions are anaero-

bic. However, methane is also produced above the water

table around plant roots, where soil oxidation is incom-

plete,4 all be it to a lesser extent than in fully anaerobic con-

ditions. We assume that this root-facilitated production

involves the same archaea that operate below the water

table, and that the amount of roots in aerobic conditions

increases linearly as the water table falls below the surface.

However, as this process occurs in partially oxidized soil,

we assume that the presence of oxygen is a greater

factor in limiting production than in fully anaerobic con-

dition, where temperature seems to be the key limitation

on production. This is characterized by a different tempera-

ture dependence for production around roots, denoted

by Q̂10.

This results in a second production term in our dynamical

system, representing the root-facilitated production.

Production P is now given by

P ¼ pQðT&TmÞ=10
10 þwp̂Q̂ðT&TmÞ=10

10

$ %
Bmg½S(; ð18Þ

where p̂ is defined similarly to p as the production rate

around roots at temperature Tm. Substituting this into

Figure 4. Simulation of the flux model (17), alongside observed flux at the
Moorhouse site. Parameter values are p ¼ k ¼ 2.5, a ¼ 900, [S] ¼ 0.36,
[O2] ¼ 0.3, U ¼ 0.9, Q10 ¼ 14.75, q10 ¼ 1.4, Tm ¼ 6.5, g ¼ 20 and c ¼ 0.2.

Figure 3. The depth below the surface of the water table at Moorhouse
through 1995. Negative value indicates surface water.
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Equation (7) gives

d½CH4(
dt

¼ pQðT&TmÞ=10
10 þwp̂Q̂ðT&TmÞ=10

10

$ %
Bmg½S(

& kqðT&TmÞ=10
10 Bmt½CH4(½O2(2 &U½CH4(; ð19Þ

which when taken to equilibrium gives a flux model

F ¼ U
pQðT&TmÞ=10

10 þwp̂Q̂ðT&TmÞ=10
10

$ %
a½S(

kqðT&TmÞ=10
10 gð1þ cWÞ½O2(2 þU

: ð20Þ

Flux with extreme water table

We now return to the earlier observation that the response of

our model to a deep water table appears weaker than

required. Previously, we represented flux by Equation (17),

where the relationship between flux and water table depth

was qualitatively equivalent to F ¼ (1 þ W )21, where W ¼
max(0, w) as previously, which for large w behaves like 1/
w. By introducing root-facilitated methanogenesis in

Equation (20), our model now acts like F ¼ (a þw)/(1 þ
W ), which for large w approximates the constant 1. This

does not, however, match the dip in observed flux when w
is large.

Indeed, plotting the observed flux against water table

depth w, as shown in Fig. 5, suggests that the functional

response of flux to varying water table depth is similar to

F ¼ (a þw)/(1 þ bWs), for constants b and s . 1. When

s ¼ 2, this looks like 1/w for large w, which earlier seemed

to underestimate the effect of a deep water table. Setting

s ¼ 3, and approximating the functional response such that

the y-intersect is at 40 nmol, and the function peaks

around w ¼ 6.5, with maximal flux 270 nmol of methane,

we find that flux decreases more rapidly than the observed

data for large w. Thus, we select s in the open interval

(2,3), choosing s ¼ 5/2.

Transferring this back to our model, we can explain this

by noting that bacteria are not evenly spread throughout

the soil profile and are less prevalent near the surface than

in deeper layers.10 Thus, we assume that methanotrophic

biomass increases as we go down the soil profile, so

aerobic oxidation occurs at a rate proportional to W5/2,

replacing Equation (9) with

dBmt

dt
¼ rmtBmt 1& Bmt

gð1þ cW5=2Þ

! "
; ð21Þ

giving a stable attractor at Bmt ¼ gð1þ cW5=2Þ.
Here, we also note that while there is no change in the

amount of oxidation when there is surface water, the flux

is affected. This is because surface water can retain

methane without releasing it into the atmosphere. We

assume that this occurs linearly, and incorporate it into our

model by allowing ‘negative production’ around plant

roots. Clearly, this is not what actually happens, but

allows us to include this factor while keeping the model as

simple as possible. Therefore, our flux model now looks like

F ¼ U
pQðT&TmÞ=10

10 þwp̂Q̂ðT&TmÞ=10
10

$ %
a½S(

kqðT&TmÞ=10
10 gð1þ cW5=2Þ½O2(2 þU

: ð22Þ

Parameter estimation

The next problem we face is finding parameters that are both

biologically realistic and ensure that our model fits the

observed data well. To achieve this, we use the techniques

of non-linear regression, and in particular least squares

analysis.11 The aim of least-squares analysis is to reduce

the x2 value, measuring the distance between observed data

f (i) and the prediction of a model F(i).
In order to simplify the least squares analysis, we first

reduce our flux model to a form containing the smallest

number of parameters that can capture all the information

in the model. Grouping constants together and labelling

the new parameters ai, we can reduce our model by defining

new parameters as follows:

a1 ¼ pa½S(Q&Tm=10
10 ; ð23Þ

a2 ¼ lnQ10; ð24Þ

a3 ¼ p̂a½S(Q̂&Tm=10
10 ; ð25Þ

a4 ¼ ln Q̂10; ð26Þ

a5 ¼ k½O2(2gc
U

q&Tm=10
10 ; ð27Þ

a6 ¼ lnq10; ð28Þ

a7 ¼ 1

c
; ð29ÞFigure 5. Observed methane flux from the Moorhouse site plotted against

water table depth.
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which we can then arrange into a seven-dimensional vector

a, with ith parameter ai.
Unfortunately, due to singularities that occur in @F/@s

whenever the water table is at or above the surface, we

cannot use the method outlined below to estimate the par-

ameter s. As such, we continue to use a default value of

s ¼ 5/2. Taking our seven parameters and rearranging, the

daily flux model reduces to something a little simpler,

FðijaÞ ¼ a1 expða2TðiÞ=10Þ þwðiÞa3 expða4TðiÞ=10Þ
1þ a5 expða6TðiÞ=10Þða7 þWðiÞ5=2Þ

; ð30Þ

which still contains all the data of our model, and F(ija) is the
flux on day i given a set of parameters a.

Once this simplification is made, we need a method of

improving the fit of the model by adjusting the parameters.

The method we choose to use is the Levenberg–Marquardt

method of least squares analysis,11 to minimize the x2

value. Define

Bi ¼
X365

t¼1

ð f ðtÞ & FðtjaÞÞ @FðtjaÞ
@ai

; ð31Þ

giving a seven-dimensional vector B, and

Aij ¼

P365

t¼1

@FðtjaÞ
@ai

@FðtjaÞ
@aj

; i = j

ð1þ lÞ
P365

t¼1

@FðtjaÞ
@ai

$ %2
; i ¼ j

8
>>><

>>>:
; ð32Þ

where all derivatives are evaluated at the point a, and l is

chosen to be small, in our case 0.01. The Aij’s are placed

in a matrix A. The key stage in the algorithm is solving the

equation

Ad ¼ B; ð33Þ

for the unknown vector d. We then define ā ¼ aþ d. If the x2

value for the model is lower with the new set of parameters

ā, then l is reduced by a factor of 2, and we redefine a by

a ¼ ā and repeat the process with the new parameters. If

the x2 value increases with our change of parameters, then

we double l and repeat. We do this until x2 remains approxi-

mately constant, halting the process when it remains con-

stant to a precision on four decimal places.

For an initial estimation of parameters, we choose aT ¼
(35, 1.4, 10, 0.3, 0.0015, 0.1, 5). Running the algorithm

once from this starting point returns aT * (23.1, 1.93, 1.3,

2.65, 0.0005, 1.71, 68.3). However, because l is reduced

by a factor of 2 every time we reduce the x2 value, the algor-

ithm does not necessarily run to convergence. If the initial

estimate is too far from the minimum we are seeking, the

algorithm can stop while still a long way from the

minimum. Note that in running the algorithm, a6 has

increased to more than 17 times its initial value, and a7

has increased to almost 14 times the initial value. Because

of this, we could still be a considerable distance from the

x2 minimum. As such, we run the algorithm a second time,

starting from the approximate endpoint of the first run

given above. This second iteration gives

aT * 23:8;1:85;1:31;2:58;0:000428;1:78; 52:5ð Þ: ð34Þ

which givesx2 * 250 000, rounded to three significant figures.

None of the parameters have changed dramatically in the

second iteration, so we take a to be our set of parameters.

Figure 6 shows that we do indeed have a better approxi-

mation of the real world data than in our previous model,

which had x2* 532 000, again rounded to three significant

figures. Our new model captures all the general behaviour

of the real data, if not the fine detail. We also note that

while it is a much better fit for large w, it does still overesti-

mate flux in this scenario.

We must, however, check that the parameters given in

Equation (34) are biologically realistic. The parameters a2,

a4, a6 and a7 immediately give Q10* 6.36, Q̂10 * 13:2,

q10 * 5.91 and c * 0.0191, all rounded to three significant

figures. This value of q10 is slightly higher than those

found in the literature, although this could be because we

were unable to optimize our parameter s, so we accept and

continue to use this value. As before, we assume that 90%

of produced methane is emitted, i.e. U ¼ 0.9, and we now

assume that 2 mg is the average amount of bacteria con-

tained in a patch of soil 1 cm deep, i.e. g ¼ 2. We also

assume that methane is produced up to a metre below the

water table, returning a ¼ 200. Taking [S] ¼ 0.36 and

[O2] ¼ 0.3 from the literature,10 some simple algebra

returns production and oxidation rates p* 10, p̂ * 0:0974

and k * 0.0612, where these rates are given in units of

nmol/day. The production is much lower around plant

roots than in fully anaerobic conditions, as expected given

the presence of oxygen as an inhibitor near roots. These par-

ameters all seem biologically reasonable, except q10, as

already discussed, so we can confidently use the flux model

given by Equations (30) and (34).

Figure 6. The simulated flux using Equation (30), with parameters given
by Equation (34), plotted against observed values.
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Discussion and analysis
Equilibrium assumptions

In developing our model, we have assumed that all dynamics

are fast and that the model tracks at equilibrium for both bac-

terial biomasses and soil methane concentration. Indeed, Bmg

has a constant stable attractor at Bmg(t) ¼ a. Since we are

studying the wetland area long after it forms, we can safely

continue to assume that the methanogenic biomass is at this

fixed point by the timewe come to model it. Then, by the defi-

nition of a fixed point, it remains there for all time.

The methanotrophic biomass, however, is pulled by the

model towards a stable fixed point that moves with the water

table depth. We suppose that the time during day i that

measurements are taken represents time zero for a new logistic

model, with carrying capacity b ¼ g 1þ cW5=2ðiþ 1Þ
$ %

.

We now note that the logistic equation can be solved ana-

lytically. Rearranging Equation (9) and integrating, we get

ð
1

Bmt
þ 1

b& Bmt

! "
dBmt ¼

ð
rmtdt; ð35Þ

which upon exponentiation gives the solution

BmtðtÞ ¼
bC expðrmttÞ

1þ C expðrmttÞ
; ð36Þ

where c is a constant dependent on the initial condition, taken

to be the methanotrophic biomass on day i. Setting t ¼ 0 gives

C ¼ Bmtð0Þ
bþ Bmtð0Þ

: ð37Þ

We now consider the implications of this for our methano-

trophic biomass. We need to consider how quickly this

model closes in on the stable equilibrium, as this will indicate

whether we can continue to use equilibrium values when

considering the flux model, or whether we need to consider

the bacterial dynamics explicitly.

If we are to continue assuming fast dynamics, taking the

equilibrium point on day i as the initial condition, and the

next days equilibrium point as the carrying capacity, b
should return Bmt(1) * b for all i. It is easy to calculate

Bmtð1Þ ¼
bC expðrmtÞ

1þ C expðrmtÞ
; ð38Þ

so Bmt (1) * b is equivalent to

1 * C expðrmtÞ
1þ C expðrmtÞ

: ð39Þ

To calculate rmt, we use the lowest growth rate reported,

14% per hour.6 Thus, after 1 h, a biomass of 1 has become

1.14. Extending over 24 h, this original biomass of 1

becomes 1.1424, giving rmt ¼ 1.14242 1 * 22.2. We then

need to consider when C is minimal, as this is when the right-

hand side of Equation (39) is furthest from1.This occurswhen

the initial condition is smallest and b is largest. Themaximum

value of b is with the deepest water table, w ¼ 39.92 cm,

giving b * 386, and the smallest initial condition is g ¼ 2.

This gives C * 0.00516, which when entered into the right-

hand side of Equation (39) returns 1, even when rounded to

seven significant figures. Therefore, the worst-case scenario is

jBmtð1Þ & bj , 10&7; ð40Þ

soBmt(1) is clearly close to b, andwe shall continue to assume

that the methanotroph biomass tracks at equilibrium.

This leaves the equilibrium assumption on the soil methane

concentration itself. We are not so fortunate here, in that any

analytical solution is much more complicated. As such, we do

not attempt this here. Instead,wenumerically solve thedifferen-

tial equation (19) using a backwards Euler method,11 choosing

this as it is an implicit method, usually stable with much larger

step size than the simpler explicit methods. In fact, since

Equation (19) is linear in [CH4], we can simplify the implicit

method. Taking the backwards Euler method, given by y(t þ
h) ¼ y(t) þ hy0(t þ h), and replacing the arbitrary function

y(t) with our function [CH4](t), we can rearrange to get

½CH4(ðt þ hÞ ¼

½CH4(ðtÞ þ h pQðT&TmÞ=10
10 þwp̂Q̂ðT&TmÞ=10

10

$ %
a½S(

1þ h kqðT&TmÞ=10
10 Bmt½O2(2 þU

$ % :
ð41Þ

For an initial condition for our simulation, we assume that

at day 0, the temperature and water table depth are both at

zero, and take the methane concentration to be the equili-

brium value for this climate. We also assume that between

measurements, the temperature and water table move linearly

to the next observed level, so, for example, if T(t) ¼ a and

T(t þ 1) ¼ b, then Tðt þ 1=2Þ ¼ ðaþ bÞ=2. We then run a

simulation of the soil methane concentrations throughout

1995 using this backwards Euler method, with step size h ¼
1/2. The daily flux is then calculated by multiplying the soil

methane concentration by U. This is then plotted against the

equilibrium flux on each day, as shown in Fig. 7. The figure

shows that the results are very similar, with r2 ¼ 0.9894. We

can also easily calculate the average discrepancy between the

two models as 3.75 nmol/day, compared with average flux

of 865 nmol/day. Because the equilibrium flux assumption

affects the model’s output so little and is simpler to work

with, we continue assuming that all dynamics are fast.

Temporal scaling, Jensen’s inequality

We now move on to look at the methane flux over longer

time periods, in order to study the potential effects of
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climate change on methane emissions. This would be much

simpler if we just consider the average daily flux over a

year and ignore the day-to-day variation. The average flux

of our model is

1

365

X365

t¼1

F ¼ U
pQðTðtÞ&TmÞ=10

10 þwðtÞp̂Q̂ðTðtÞ&TmÞ=10
10

$ %
a½S(

kqðTðtÞ&TmÞ=10
10 gð1þ cWðtÞ5=2Þ½O2(2 þU

* 86:5:

ð42Þ

However, it would simplify things greatly if we could con-

sider this average flux in terms of the average climate. The

simplest way to do this is to calculate the flux on a fictional

day which has exactly average water table depth and temp-

erature. In our case, though, this gives an average flux of

104 nmol/day, an obvious overestimation. This is an

example of Jensen’s inequality, expanded into two dimen-

sions. Jensen’s inequality states that in general, for a

random variable X, and a function f, E( f(X ))= f(E(X )).

Extended into two dimensions, this becomes

E f ðX;YÞð Þ = f EðXÞ;EðYÞð Þ; ð43Þ

for a second random variable Y.12 The conventional

approach in this situation is to take a Taylor’s series expan-

sion around the point m ¼ !X; !Y
' (

, where !+ is shorthand for

the expectation operator E(.). Taking a second-order

Taylor’s expansion, dropping the remainder and working

out, expected values return

Eð f ðX;YÞÞ * f ðmÞ þ VarðXÞ
2

@2f

@X2
ðmÞ

þ VarðYÞ
2

@2f

@Y2
ðmÞ

þ CovðX;YÞ
2

@2f

@X@Y
ðmÞ: ð44Þ

How good an approximation this is is determined by how

non-linear the function f is. In our case, setting X ¼ T, Y ¼
w and f ¼ F gives an average daily flux of 61.6 nmol.

Whereas the first-order approximation overestimates the

flux, this second-order approximation underestimates the

emissions.

The natural extension here is to take higher-order approxi-

mations by extending the Taylor series to include higher

derivatives. However, Taylor’s theorem states that if a func-

tion f is n-times continuously differentiable on the interval

ðX; !XÞ, and (n þ 1)-times differentiable, then the Taylor

series expansion can only be guaranteed to converge to the

function up to the nth-order approximation. We note that

while our flux model F is smooth with respect to tempera-

ture, it is only piecewise smooth with respect to water

table depth, as the function is different for w. 0 than for

w , 0. Differentiating with respect to w three times, we see

that the third derivative has a discontinuity at zero, as

limw!0&Fð3ÞðwÞ ¼ 0, but limw!0þFð3ÞðwÞ ¼ &1. Therefore,

we can only guarantee convergence of the Taylor series up

to the second derivatives. Extending this to two dimensions

again, we can indeed see that the series does diverge, as the

next two approximations are 12.9 and 187 nmol/day, both

of which are much further from the actual average flux

than earlier attempts. Thus, we now rule out the possibility

of approximating the average flux in this manner.

Effects of climate change

Having ruled out the use of average climate, we must con-

sider how to implement climate change trends into the

model. Average global temperature is predicted to rise 28C
before the year 2100,1 a rate of 0.028C/year. The simplest

way to implement this is to artificially increase the recorded

temperature each day by 0.028C. Another likely effect of

climate change in the UK is increased precipitation. We

assume that average precipitation increases by 0.2 cm/year.
However, it is likely that this will be partially offset by

increased evapotranspiration and runoff, so we assume that
!w decreases by 0.04 cm/year. Again, the simplest way to

implement this is to artificially decrease w by 0.04 cm each

day. Therefore, the average flux in year N is calculated by

replacing T(t) and w(t) in Equation (42) by T(t) þ 0.02N
and w(t) 2 0.04N, respectively.

Figure 8 shows the average daily emissions each year until

2300, assuming the trends above continue. This shows that

initially, the increase in temperature will cause higher emis-

sions, overriding the decrease in w, which should cause emis-

sions to drop. However, in year 150 of the simulation

(2145), when !T ¼ 9.558C and !w ¼ 0.81 cm, we reach a

maximum flux, "108 nmol/day. After this, the heightened

water table becomes a more important factor than the

increased temperature, and the emissions begin to drop,

falling to approximately half current levels by 2300, when

flux is 45.1 nmol/day.

Figure 7. Plot of the backwards Euler simulation values plotted against the
equilibrium flux values, with r2 ¼ 0.9894.
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Conclusion
The simple model above is based on a conceptual approach,

built on the assumption that temperature and water table

depth are important factors in determining methane emis-

sions. This conceptual model is compared with observed

data from the Moorhouse site in Teesdale and modified to

better approximate the observed emissions. Although the

model is much simplified, it captures the general patterns of

methane flux, although does not capture fine details. This

could possibly be improved by considering factors such as sub-

strate concentration as dynamic, rather than the constants con-

sidered here. Further improvements could be including

temperature dependence on plant-mediated transport,13 or

food dependence of bacterial carrying capacities, as growth

rates are unlikely to be affected (K. Redeker, personal corre-

spondence). Improved data fitting could be achieved byoptim-

izationof theparameter s, possiblyusingmaximum-likelihood

estimation. The model should also be checked against data

from other wetland sites, possibly varying substrate concen-

tration and bacterial biomass parameters.

Having approximated emissions, the implications of current

climate change trends were considered. Initially, the emissions

increasedwith temperature, due tomethane potencyas a green-

house gas. However, 150 years into the simulation, flux begins

to decrease. These predictions could be compared with

observed flux in the future, although a more informative

approach may be to consider the model outlined here inte-

grated into a model describing peatland evolution.8 This is an

area that could lead to interesting work in the future.
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